Posted on

Planning for noise

The trouble with radio planning software

Radio planning software has a patchy reputation. Regardless of cost, the criticism, especially from novice users, is generally that results “do not match the real world”. The accuracy of modelling software can be improved with training, better data, tuned clutter etc but if you do not plan for the local spectrum noise, it will be inaccurate.

The reason modelling does not match the real world, is the real world is noisy, and noise is everything in digital communications. Spectrum noise will limit your network’s coverage and equipment’s capabilities. A radio that should work miles can be reduced to working several feet only when the noise floor is high enough.

Anyone expecting simulation software to produce an accurate result without offering an accurate noise figure will be forever disappointed as software cannot predict what the noise floor is in a given location at a given moment – you need hardware for that…

Spectrum sensing radios

Modern software defined radios are capable of sensing the noise figure for the local environment. This allows operators, and cognitive radios, to make better choices for bands, power levels and wave-forms as narrow wave-forms perform better in noise than wider alternatives due to channel noise theory where noise increases with bandwidth.

For example, you can have a radio capable of 100Mb/s but it won’t deliver that speed at long range, at ground level, as it requires a generous signal-to-noise margin to function. This is why a speed demo is always at close range.

When spectrum data is exposed via an API, like in the Trellisware family of radios, it provides a rich source of spectrum intelligence which can be used for radio network management, and dynamic RF planning with third party applications. When we integrated this radio API last year, we were focused on acquiring radio locations, not spectrum noise. At the time we could only consider a universal noise floor value in our software so the same noise value was applied for all radios which was vulnerable to error as radios in a network will report different noise values.

Interference: a growing issue

The single biggest communications problem we hear about, from across market sectors, is interference, either deliberate, accidental, or just ambient like in a city. The number of RF devices active in the spectrum, especially ISM and cellular bands, is increasing and in markets which were relatively “quiet”, such as agriculture. Some have always been problematic, such as motorsport, where the noise floor increases significantly on race days.

Spectrum management is a huge problem which won’t be fixed with management consultants or artificial intelligence. Regulators can, and are, restructuring spectrum for dynamic use but to use this finite resource efficiently, hardware and software vendors need to publish APIs and competing vendors need to be incentivised to work to common information standards.

As noise increases, the delta between low-noise RF planning results and real world results has the potential to grow. There’s anecdotal evidence that some private 5G network operators are experiencing so much urban noise they’ve given up on RF planning altogether, and have opted to take their chances using a wet finger and local knowledge. Skipping RF planning is a managed risk when a company has experienced staff (or they get paid for failure), but it does not scale and is a significant risk when working in a new area and/or with inexperienced staff.

A solution: The noise API

To address this challenge, we’ve developed a noise API to eliminate human error, and guesswork for noise floor values which has undermined the reputation of “low-noise” radio planning software.

Manual entry can now be substituted for a feed of recent, or live, spectrum intelligence to enable faster and more accurate network planning. Combined with our real-time GPU modelling, the API can model coverage for moving vehicles, with real noise figures.

There are two new API requests in v3.9 of our API; /noise/create; for adding noise, and /noise/get; for sampling noise. The planning radius is used as a search area so you can upload 1 or thousands of measurements, private to your account. The planning API will reference the data, if requested, and if recent (24 hours) local noise is available for the requested frequency, it will sample it and compensate for the proximity to the transmitter(s).

When no noise is available within the search radius, an appropriate thermal noise floor will be used based on the channel bandwidth and the Johnson-Nyquist formula. The capability can be used by our create APIs (Area, Path, Points, Multisite) by substituting the noise figure in the request eg. “-99” for the trigger word “database”.

{
  "site": "2sites",
  "network": "MULTISITE",
  "transmitters": [
    {
      "lat": 52.886259202681785,
      "lon": -0.08311549136814698,
      "alt": 2,
      "frq": 460,
      "txw": 2,
      "bwi": 1,
      "nf": "database",
      "ant": 0,
      "antenna": {
        "txg": 2.15,
        "txl": 0,
        "ant": 39,
        "azi": 0,
        "tlt": 0,
        "hbw": 1,
        "vbw": 1,
        "fbr": 2.15,
        "pol": "v"
      }
    },
    {
      "lat": 52.879223835785716,
      "lon": -0.06069882048039804,
      "alt": 2,
      "frq": 460,
      "txw": 2,
      "bwi": 1,
      "nf": "database",
      "ant": 0,
      "antenna": {
        "txg": 2.15,
        "txl": 0,
        "ant": 39,
        "azi": 0,
        "tlt": 0,
        "hbw": 1,
        "vbw": 1,
        "fbr": 2.15,
        "pol": "v"
      }
    }
  ],
  "receiver": {
    "alt": 2,
    "rxg": 2,
    "rxs": 10
  },
  "model": {
    "pm": 11,
    "pe": 2,
    "ked": 1,
    "rel": 80
  },
  "environment": {
    "clm": 0,
    "cll": 2,
    "clt": "SILVER.clt"
  },
  "output": {
    "units": "m",
    "col": "SILVER.dB",
    "out": 4,
    "res": 4,
    "rad": 3
  }
}: 

In the example JSON request above, two adjacent UHF sites are in a single GPU accelerated multisite request. The sites both have a noise floor (nf) key with a value of “database”. Noise will be sampled separately for each site.

Demo 1: Motorsport radio network on race day

The local noise floor jumps ups significantly on race day compared with the rest of the time making planning tricky.

Demo 2: Importing survey data to model the “real” coverage across a county

By importing a spreadsheet of results into the API, we can generate results sensitive to each location.

A look forward to cognitive networks

Autonomous cognitive radio networks require lots of data to make decisions.
Currently, they can use empirical measurements of values such as noise to inform channel selection and power limits at a single node.
What they cannot do is hypothesise what the network might look like without actually reconfiguring. To do that requires a fast and mature RF planning API, integrated with live network data. Only then can you begin to ask the expansive questions like, which locations/antennas/channels are best for my network given the current noise or the really interesting future noise whereby the state now is known but the state in the future is anticipated.

As our GPU multisite API can model dozens of sites in a second, the future could be closer than you think…

References

API reference: https://cloudrf.com/documentation/developer/swagger-ui/

Hosted noise client: https://cloud-rf.github.io/CloudRF-API-clients/integrations/noise/noise_client.html

GPU multisite racetrack demo: https://cloud-rf.github.io/CloudRF-API-clients/slippy-maps/leaflet-multisite.html

Posted on

Simulating Jamming

George square wifi Jamming is a form of electronic attack which uses a stronger signal to disrupt target wireless devices. DISCLAIMER: It is an offence to intentionally interfere with someone else’s use of the wireless spectrum in the UK. The mention of its name also disrupts rational thinking amongst otherwise intelligent people and its common for spectrum planners and event managers to ignore signal theory when discussing its impact and revert to hollywood instead. Originally used in warfare, it’s now commonly used in civil emergencies such as event protection, bomb disposal or hostage negotiation. This blog uses modelling evidence to demonstrate the impact of jamming in a city and in the process, debunk popular jamming myths. The target band in all models is the 2.4GHz ISM band which is easily the busiest unlicensed band in the world and home to WiFi, Bluetooth, CCTV, Locks, Sensors, Drones and phones. The chosen location is George Square in Glasgow which is a large open surrounded by tall stone buildings. The antenna used is Omni-directional to visualise the effect in all directions.

Jamming thresholds

IEEE standard protocols such as 802.11 have defined thresholds for Energy Detection (ED) above which they will not transmit. If you can hit this threshold then devices will refuse to transmit and can be considered ‘jammed’. For 802.11 the energy detection threshold is -62dBm which is a strong wireless signal. You would need to be in the same room as the wireless router to see a signal this strong so to be effective you must be close or just be very very powerful like a military airborne jammer.

Power limits

In Europe the power limit for 2.4GHz is 0.1 Watt or 20dBm which is what a domestic Wi-Fi router radiates. This is low by design to minimise interference, conserve battery and enhance privacy against eavesdropping. In the US it’s higher at a generous 1 Watt / 30dBm which still works since everyone is even when competing for channel access, just on a bigger scale. Jamming someone within this limit is hard. You either need to get very close (~10m) or use a directional antenna. For jamming of a wide area like the whole square and beyond you would need hundreds of watts of power. You can deliver this efficiently with a directional antenna and reduce collateral damage in the process but jamming a wide area with a ground based jammer requires an enormous amount of power. Siting the jammer above the clutter is much more efficient.

Simulating jamming

The key setting for simulating the effect of jamming is the receiver threshold. Creating a radio coverage map with a ‘normal’ threshold like -90dBm would not be useful unless you were intent on producing a misleading result to support an argument against using jamming. For an accurate map of jamming ‘effect’ you need to see the coverage at the ED threshold (-62dBm). Within the web interface this is under the ‘Receiver’ menu and in the api it is the ‘rxs’ parameter.

10 Watts

Using a 2.4GHz frequency and an omni-directional antenna the protection “bubble” covers the square at ~200m radius but not much else due to building attenuation. A value of 3.0 dB/m was used the neighbouring stone buildings.

George square wifi
George square wifi

100 Watts…

Increasing the power by a factor of 10 does little to the bubble due to the way power decays logarithmically. The stone buildings are still blocking the signal so the bubble extends out to ~400m now with a gain toward a piece of high ground to the north east and down straight streets where there’s line of sight.

1000 Watts?…

If you were higher than the buildings, 1KW would jam devices at 7km according to the Friis path loss model. Down on the street however it’s a different story and the bubble is extending only a few hundred metres beyond the square and further down streets with line of sight.

Summary

Antenna siting, not RF power is how to get the best out of a jammer and urban modelling is essential for maximum effect and to minimise collateral damage, especially in the ISM and cellular bands.

People won’t die, but they will get confused

The greatest fear with collateral damage is disruption to ISM medical devices such as wireless implants. If you jammed inside a hospital where ISM band equipment is used, you could disrupt medical equipment but to influence it from beyond the hospital walls would require several kilowatts of RF delivered very nearby to penetrate the walls with enough power to still exceed the ED level. Wireless medical devices are designed for failure. They are after all used in the busiest spectrum in the busiest cities in the world and have back-off and interference coping mechanisms built in to the standard, like 802.11’s -62dBm ED level and random back-off timer to manage channel contention.

Vehicles won’t crash, but they might stop playing music

The 2.4GHz band is a healthy distance from 1.5GHz where GPS resides. Jamming one to target data communications does not influence the other unless your equipment is really poor. Even if you did interfere with vehicles navigation systems, they are distinct, again by design, from control systems since the spectrum is shared and prone to interference. The most likely impact would be on Bluetooth which uses the entire 2.4GHz band and is commonly used in vehicle infotainment systems which would suffer interference.